Use of a biomimetic strategy to engineer bone.
نویسندگان
چکیده
Engineering trabecular-like, three-dimensional bone tissue throughout biodegradable polymer scaffolds is a significant challenge. Using a novel processing technique, we have created a biodegradable scaffold with geometry similar to that of trabecular bone. When seeded with bone-marrow cells, new bone tissue, the geometry of which reflected that of the scaffold, was evident throughout the scaffold volume and to a depth of 10 mm. Preseeded scaffolds implanted in non-healing rabbit segmental bone defects allowed new functional bone formation and bony union to be achieved throughout the defects within 8 weeks. This marks the first report of successful three-dimensional bone-tissue engineering repair using autologous marrow cells without the use of supplementary growth factors. We attribute our success to the novel scaffold morphology.
منابع مشابه
Biomimetic matrices self-initiating the induction of bone formation.
The new strategy of tissue engineering, and regenerative medicine at large, is to construct biomimetic matrices to mimic nature's hierarchical structural assemblages and mechanisms of simplicity and elegance that are conserved throughout genera and species. There is a direct spatial and temporal relationship of morphologic and molecular events that emphasize the biomimetism of the remodeling cy...
متن کاملEngineering Vascularized Bone Grafts by Integrating a Biomimetic Periosteum and β-TCP Scaffold
Treatment of large bone defects using synthetic scaffolds remain a challenge mainly due to insufficient vascularization. This study is to engineer a vascularized bone graft by integrating a vascularized biomimetic cell-sheet-engineered periosteum (CSEP) and a biodegradable macroporous beta-tricalcium phosphate (β-TCP) scaffold. We first cultured human mesenchymal stem cells (hMSCs) to form cell...
متن کاملSelf-Assembled Hydrogel Fiber Bundles from Oppositely Charged Polyelectrolytes Mimic Micro-/Nanoscale Hierarchy of Collagen
Fiber bundles are present in many tissues throughout the body. In most cases, collagen subunits spontaneously self-assemble into a fibrilar structure that provides ductility to bone and constitutes the basis of muscle contraction. Translating these natural architectural features into a biomimetic scaffold still remains a great challenge. Here, a simple strategy is proposed to engineer biomimeti...
متن کامل3D Printing of Lotus Root‐Like Biomimetic Materials for Cell Delivery and Tissue Regeneration
Biomimetic materials have drawn more and more attention in recent years. Regeneration of large bone defects is still a major clinical challenge. In addition, vascularization plays an important role in the process of large bone regeneration and microchannel structure can induce endothelial cells to form rudimentary vasculature. In recent years, 3D printing scaffolds are major materials for large...
متن کاملPreparation and Characterization of Hydroxyapatite Coating on Ti6Al4V Cylinders by Combination of Alkali-Heat Treatments and Biomimetic Method
Biomimetic method was used to apply hydroxyapatite (HA) coating onto Ti6Al4V cylinders. This process is a physicochemical method in which a substrate is soaked in a solution simulating the physiological conditions, for a period of time enough to form a desirable layer of the calcium phosphate on the substrate. In the present study, specimens were soaked in 5, 10 M solutions of NaOH at temperatu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical materials research. Part A
دوره 65 4 شماره
صفحات -
تاریخ انتشار 2003